首页 产业新闻 浅谈自动驾驶系统测试

浅谈自动驾驶系统测试

产业新闻 92

    一、自动驾驶系统级测试的基础理论 1.1 自动驾驶测试场景的构成

    1.1.1 构成框架

    *该图引用国汽智联材料

    1.1.2 场景来源

    真实驾驶记录场景 专家经验构建场景(先验知识)

    1.1.3 真实驾驶场景来源

    真实驾驶场景处理流程:

    *该图引用国汽智联材料

    车端记录场景:

    *该图引用国汽智联材料

    场景记录场景:

    *该图引用国汽智联材料

    专家经验构建:

    1.2 通过多个分析维度构建自动泊车测试用例框架

    *该图引用论文《智能汽车自主泊车系统测试方法》蒙昊蓝等

    1.3 由测试场景演变出具体的测试用例

    *该图引用丰田研究员会议材料

    1.4 整车系统级测试工作的开展

    由对的人,在对的地点,对待测试的车辆,使用准确的测试工具,安全的开展测试,详细的记录测试过程。

    1.5 分析测试结果的原则

    1.5.1 SOTIF——开发原则

    1.5.2 SOTIF——开发目标(安全导向、功能导向)

    1.5.3 接管严重性等级划分

    “接管”定义、分类、命名:

    I类接管:不接管会碰撞

    在系统设计运行范围(ODD)之内,不处理就会发生碰撞时,引发的接管;

    由于自动驾驶系统设计不足,违反法律法规要求时,引发的接管

    II类接管:不接管会碰撞

    在系统设计运行范围(ODD)之外,不处理就会发生碰撞时,引发的接管

    III类接管:不接管不会碰撞,但不属于误接管

    由于自动驾驶系统设计不足,发生自车驾驶行为不符合人类预期、道德情感等要求时,引发的接管

    系统降级和退出接管机制触发,经过系统提醒后的接管

    IV类接管:不接管不会碰撞的误接管

    无危险时,人类误触发引发的接管、人类手动驾驶

    1.6 分层测试和工具链

    1.6.1 分层测试

    *该图引用中汽中心会议材料

    1.6.2 测试工具链

    *该图引用中汽中心会议材料

    二、测试和数据 2.1 测试驱动开发体系

    2.2 测试和数据的关系总结

    目前AI是以深度学习为主流技术,该技术需要有算法模型和数据。

    对于数据来说,需要满足几个条件:

    数据的标注方式适用于数据驱动的算法模型 数据需要在应用场景中有合理分布 算法表现不好的方面,需要有对应数据不断扩充

    测试和数据的关系总结:

    测试结果给收集数据的指明方向,提供了筛选方法论 测试提供了海量数据,SOP前后均可以进行测试数据的收集,自建车队采集、量产车队数据采集 测试提供了工具链,如:Trigger(record,lable)、Visualization(analyse、debug)、Test Automation等